Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.03.478946

ABSTRACT

The Omicron variant of SARS-CoV-2, first detected in November 2021, is rapidly becoming the dominant lineage worldwide. We assessed the affinities of two monoclonal antibodies (mAbs), casirivimab and imdevimab, to wild type, Delta and Omicron spike; to provide context, we compared the properties of these therapeutic mAbs to the affinities and concentrations of wild-type RBD specific antibodies in 74 convalescent sera. The affinities of both mAbs to wild type and Delta RBDs were in the same range as the polyclonal responses of the convalescents. Antibodies in a pooled, convalescent plasma from early 2020 retained nanomolar affinities to wild type, Delta and Omicron RBDs; however, the concentration of Omicron-specific antibodies decreased considerably. By contrast, the affinity of casirivimab to Omicron RBD decreased by factors >1000 and 600 compared with wild type and Delta RBDs, respectively. Imdevimab did not bind to Omicron at [≤]10 M. These results corroborate the finding that casirivimab and imdevimab do not prevent infection of cells by the Omicron variant.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.23.453327

ABSTRACT

Understanding the factors that contribute to antibody escape of SARS-CoV-2 and its variants is key for the development of drugs and vaccines that provide broad protection against a variety of virus variants. Using microfluidic diffusional sizing, we determined the dissociation constant ((KD)) for the interaction between receptor binding domains (RBDs) of SARS-CoV-2 in its original version (WT) as well as alpha and beta variants with the host-cell receptor angiotensin converting enzyme 2 (ACE2). For RBD-alpha, the ACE2-binding affinity was increased by a factor of ten when compared with RBD-WT, while ACE2-binding of RBD-beta was largely unaffected. However, when challenged with a neutralizing antibody that binds to both RBD-WT and RBD-alpha with low nanomolar (KD) values, RBD-beta displayed no binding, suggesting a substantial epitope change. In SARS-CoV-2 convalescent sera, RBD-binding antibodies showed low nanomolar affinities to both wild-type and variant RBD proteins--strikingly, the concentration of antibodies binding to RBD-beta was half that of RBD-WT and RBD-alpha, again indicating considerable epitope changes in the beta variant. Our data therefore suggests that one factor contributing to the higher transmissibility and antibody evasion of SARS-CoV-2 alpha and beta is a larger fraction of viruses that can form a complex with ACE2. However, the two variants employ different mechanisms to achieve this goal. While SARS-CoV-2 alpha RBD binds with greater affinity to ACE2 and is thus more difficult to displace from the receptor by neutralizing antibodies, RBD-beta is less accessible to antibodies due to epitope changes which increases the chances of ACE2-binding and infection.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.23.453352

ABSTRACT

Recent efforts in understanding the course and severity of SARS-CoV-2 infections have highlighted both potential beneficial as well as detrimental effects of cross-reactive antibodies derived from memory immunity. Specifically, due to a significant degree of sequence similarity between SARS-CoV-2 and other members of the coronavirus family, memory B-cells that emerged from previous infections with endemic human coronaviruses (HCoVs) could be re-activated upon encountering the newly emerged SARS-CoV-2, thus prompting the production of cross-reactive antibodies. Understanding the affinity and concentration of these potentially cross-reactive antibodies to the new SARS-CoV-2 antigens is therefore particularly important when assessing both existing immunity against common HCoVs and adverse effects like antibody-dependent enhancement (ADE) in COVID-19. However, these two fundamental parameters cannot easily be deconvoluted by surface-based assays like enzyme-linked immunosorbent assays (ELISAs) which are routinely used to assess cross-reactivity. Here, we have used microfluidic antibody-affinity profiling (MAAP) to quantitatively evaluate the humoral immune response in COVID-19 convalescent patients by determining both antibody affinity and concentration against spike antigens of SARS-CoV-2 directly in nine convalescent COVID-19 patient and three pre-pandemic sera that were seropositive for common HCoVs. All 12 sera contained low concentrations of high affinity antibodies against spike antigens of HCoV-NL63 and HCoV-HKU1, indicative of past exposure to these pathogens, while the affinity against the SARS-CoV-2 spike protein was lower. These results suggest that cross-reactivity as a consequence of memory re-activation upon an acute SARS-CoV-2 infection may not be a significant factor in generating immunity against SARS CoV-2.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423670

ABSTRACT

Background: Immune system conditions of the patient is a key factor in COVID-19 infection survival. A growing number of studies have focused on immunological determinants to develop better biomarkers for therapies. Aim: The dynamics of the insurgence of immunity is at the core of the both SARS-CoV-2 vaccine development and therapies. This paper addresses a fundamental question in the management of the infection: can we describe the insurgence (and the span) of immunity in COVID-19? The in-silico model developed here answers this question at individual (personalized) and population levels. We simulate the immune response to SARS-CoV-2 and analyze the impact of infecting viral load, affinity to the ACE2 receptor and age in the artificially infected population on the course of the disease. Methods: We use a stochastic agent-based immune simulation platform to construct a virtual cohort of infected individuals with age-dependent varying degree of immune competence. We use a parameter setting to reproduce known inter-patient variability and general epidemiological statistics. Results: We reproduce in-silico a number of clinical observations and we identify critical factors in the statistical evolution of the infection. In particular we evidence the importance of the humoral response over the cytotoxic response and find that the antibody titers measured after day 25 from the infection is a prognostic factor for determining the clinical outcome of the infection. Our modeling framework uses COVID-19 infection to demonstrate the actionable effectiveness of simulating the immune response at individual and population levels. The model developed is able to explain and interpret observed patterns of infection and makes verifiable temporal predictions. Within the limitations imposed by the simulated environment, this work proposes in a quantitative way that the great variability observed in the patient outcomes in real life can be the mere result of subtle variability in the infecting viral load and immune competence in the population. In this work we i) show the power of model predictions, ii) identify the clinical end points that could be more suitable for computational modeling of COVID-19 immune response, iii) define the resolution and amount of data required to empower this class of models for translational medicine purposes and, iv) we exemplify how computational modeling of immune response provides an important light to discuss hypothesis and design new experiments.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.422820

ABSTRACT

The humoral immune response plays a key role in suppressing the pathogenesis of SARS-CoV-2. The molecular determinants underlying the neutralization of the virus remain, however, incompletely understood. Here, we show that the ability of antibodies to disrupt the binding of the viral spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell, the key molecular event initiating SARS-CoV-2 entry into host cells, is controlled by the affinity of these antibodies to the viral antigen. By using microfluidic antibody-affinity profiling, we were able to quantify the serum-antibody mediated inhibition of ACE2-spike binding in two SARS-CoV-2 seropositive individuals. Measurements to determine the affinity, concentration, and neutralization potential of antibodies were performed directly in human serum. Using this approach, we demonstrate that the level of inhibition in both samples can be quantitatively described using the binding energies of the binary interactions between the ACE2 receptor and the spike protein, and the spike protein and the neutralizing antibody. These experiments represent a new type of in-solution receptor binding competition assay, which has further potential areas of application ranging from decisions on donor selection for convalescent plasma therapy, to identification of lead candidates in therapeutic antibody development, and vaccine development.

6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423733

ABSTRACT

Although a defective vitamin D pathway has been widely suspected to be associated in SARS-CoV-2 pathobiology, the status of the vitamin D pathway and vitamin D-modulated genes in lung cells of patients infected with SARS-CoV-2 remains unknown. To understand the significance of the vitamin D pathway in SARS-CoV-2 pathobiology, computational approaches were applied to transcriptomic datasets from bronchoalveolar lavage fluid (BALF) cells of such patients or healthy individuals. Levels of vitamin D receptor, retinoid X receptor, and CYP27A1 in BALF cells of patients infected with SARS-CoV-2 were found to be reduced. Additionally, 107 differentially expressed, predominantly downregulated genes modulated by vitamin D were identified in transcriptomic datasets from patient's cells. Further analysis of differentially expressed genes provided eight novel genes with a conserved motif with vitamin D-responsive elements, implying the role of both direct and indirect mechanisms of gene expression by the dysregulated vitamin D pathway in SARS-CoV-2-infected cells. Network analysis of differentially expressed vitamin D-modulated genes identified pathways in the immune system, NF-KB;cytokine signaling, and cell cycle regulation as top predicted pathways that might be affected in the cells of such patients. In brief, the results provided computational evidence to implicate a dysregulated vitamin D pathway in the pathobiology of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Cerebrospinal Fluid Leak
SELECTION OF CITATIONS
SEARCH DETAIL